If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+10a=5
We move all terms to the left:
a^2+10a-(5)=0
a = 1; b = 10; c = -5;
Δ = b2-4ac
Δ = 102-4·1·(-5)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{30}}{2*1}=\frac{-10-2\sqrt{30}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{30}}{2*1}=\frac{-10+2\sqrt{30}}{2} $
| a^2+10a=5- | | 7/1=63/x | | 3y-12-2y=5y | | 2x-4(x-1)=8 | | x/40=4/5 | | -6x(-2)=-10 | | 6+0.10x=0.15x+8/ | | 3(x-1/2)=5(x+2/3)+4x-1 | | 1m=-8 | | 4-11x=29 | | 3y+12+2y=5y | | (9x-9)(3×+1)=0 | | 10+35=-5(7x-9) | | -6(x+7)+9=-33 | | X=55+9x | | 2x-46x=180 | | 4(2x+5)=-22+26 | | x/21=4/6 | | y=-(2)+4 | | -3²-2y=8 | | |5x+4|+|4x-1|=12 | | 15x+21=6 | | 4(x+3)-2(x+1)+3(x+12)=36 | | X=3u-2 | | 2x+31=x+32=2x+35 | | 3(x+6)=180 | | 8+9p=9p-78+9p=9p−7 | | 3u-2=X | | 6(1+x)=18 | | 0.6(x-2)=12.6 | | -18x+15=10 | | 231=-u+131 |